[ Pobierz całość w formacie PDF ]
[3] M. Wells, D. Hestenes, and G. Swackhamer, A Modeling Method for High
School Physics Instruction, Am. J. Phys. 63: 606-619 (1995).
[4] K. Ericsson & J. Smith (Eds.), Toward a general theory of expertise:
prospects and limits (Cambridge Univ. Press, Cambridge, 1991).
[5] A. Cromer, Connected Knowledge (Oxford, New York, 1997).
[6] L. Magnani, N. Nercessian & P. Thagard (Eds). Model-Based Reasoning
in Scientific Discovery (Kluwer Academic, Dordrecht/Boston, 1999).
[7] H. Doerr, Integrating the Study of Trigonometry, Vectors and Force
Through Modeling, School Science and Mathematics 96, 407 418 (1996).
[8] D. Hestenes, Toward a Modeling Theory of Physics Instruction, Am. J.
Phys. 55, 440 454 (1987).
[9] D. Hestenes, Modeling Methodology for Physics Teachers. In E. Redish
& J. Rigden (Eds.) The changing role of the physics department in modern
universities, Part II. (American Institute of Physics, 1997). pp. 935 957.
[10] D. Hestenes, Modeling Software for learning and doing physics. In C.
Bernardini, C. Tarsitani & M. Vincentini (Eds.), Thinking Physics for
Teaching (Plenum, New York, 1996). pp. 25 66.
41
[11] A. Einstein, Ideas and Opinions (Three Rivers Press, New York, 1985). p.
274.
[12] H. Goldstein, Classical Mechanics, Second Edition (Addison-Wesley, Read-
ing MA, 1980).
[13] D. Hestenes, Grassmann s Vision. In G. Schubring (Ed.), Hermann
Gunther Grassmann (1809 1877) Visionary Scientist and Neohumanist
Scholar (Kluwer Academic, Dordrecht/Boston, 1996). pp. 191 201.
[14] E. Redish & G. Shama, Student difficulties with vectors in kinematics
problems, AAPT Announcer 27, 98 (July 1997).
[15] D. Hestenes, Mathematical Viruses. In A. Micali, R. Boudet, J. Helm-
stetter (Eds.), Clifford Algebras and their Applications in Mathematical
Physics. (Kluwer Academic, Dordrecht/Boston, 1991). p. 3 16.
[16] D. Hestenes, New Foundations for Classical Mechanics, (Kluwer, Dor-
drecht/Boston, 1986). Second Edition (1999).
[17] D. Hestenes, Point Groups and Space Groups in Geometric Algebra, In L.
Doerst, C. Doran & J. Lasenby (Eds.), Applications of Geometric Algebra
in Computer Science and Engineering (Birkhäuser, Boston, 2002). pp. 3 34
[18] D. Hestenes, Multivector Functions, J. Math. Anal. and Appl. 24, 467
473 (1968).
[19] D. Hestenes & G. Sobczyk, CLIFFORD ALGEBRA to GEOMETRIC
CALCULUS, a Unified Language for Mathematics and Physics (Kluwer
Academic, Dordrecht/Boston, 1986).
[20] D. Hestenes, Vectors, Spinors and Complex Numbers in Classical and
Quantum Physics, Am. J. Phys. 39, 1013 1028 (1971).
[21] D. Hestenes, Space-Time Algebra, (Gordon & Breach, New York, 1966).
[22] D. Hestenes, Real Spinor Fields, J. Math. Phys. 8, 798 808 (1967).
[23] D. Hestenes & R. Gurtler, Local Observables in Quantum Theory, Am.
J. Phys. 39, 1028 1038 (1971).
[24] D. Hestenes, Spin and Uncertainty in the Interpretation of Quantum Me-
chanics, Am. J. Phys. 47, 399 415 (1979).
[25] C. Doran, A. Lasenby, S. Gull, S. Somaroo & A. Challinor, Spacetime
Algebra and Electron Physics, Adv. Imag. & Elect. Phys. 95, 271 365
(1996).
[26] D. Hestenes, Differential Forms in Geometric Calculus. In F. Brackx et
al. (eds), Clifford Algebras and their Applications in Mathematical Physics
(Kluwer Academic, Dordrecht/Boston, 1993). pp. 269 285.
42
[27] D. Hestenes, Clifford Algebra and the Interpretation of Quantum Me-
chanics. In J.S.R. Chisholm & A. K. Common (eds.), Clifford Algebras
and their Applications in Mathematical Physics, (Reidel Publ. Co., Dor-
drecht/Boston, 1986), pp. 321 346.
[28] F. Dyson, From Eros to Gaia (Pantheon books, New York, 1992). Chap.
14.
[29] D. Hestenes, A Unified Language for Mathematics and Physics. In J.S.R.
Chisholm & A. K. Common (eds.), Clifford Algebras and their Applications
in Mathematical Physics, (Reidel Publ. Co., Dordrecht/Boston, 1986), pp.
1 23.
[30] In J. Chisholm & A. Common (eds.), Clifford Algebras and their Applica-
tions in Mathematical Physics (Reidel Publ. Co., Dordrecht/Boston, 1986).
[31] D. Bohm, Quantum Theory (Prentice-Hall, New York, 1951).
[32] T. Havel, D. Cory, S. Somaroo, C.-H. Tseng, Geometric Algebra Methods
in Quantum Information Processing by NMR Spectroscopy. In E. Bayro
Corrochano & G. Sobczyk (Eds.), Geometric Algebra with Applications in
Science and Engineering (Birkhäuser, Boston 2001). pp. 281 308.
[33] R. Ablamowicz & B. Fauser (Eds.), Clifford Algebras and their Applications
in Mathematical Physics, Vol. 1 &2 (Birkhäuser, Boston, 2000).
[34] E. Bayro Corrochano & G. Sobczyk (Eds.), Geometric Algebra with Appli-
cations in Science and Engineering (Birkhäuser, Boston 2001).
[35] L. Doerst, C. Doran & J. Lasenby (Eds.), Applications of Geometrical Al-
gebra in Computer Science and Engineering (Birkhäuser, Boston, 2002).
[36] T. Vold, An introduction to geometric algebra with an application to
rigid body mechanics, Am. J. Phys. 61, 491 (1993); An introduction to
geometric calculus and its application to electrodynamics, Am. J. Phys.
61, 505 (1993).
[37] W. Baylis, Electrodynamics: A Modern Geometric Approach (Birkhäuser,
Boston, 1999).
[38] A. Lasenby & C. Doran, Geometric Algebra for Physicists (Cambridge U.
Press, Cambridge 2002).
[39] D. Hestenes, The Design of Linear Algebra and Geometry, Acta Appli-
canda Mathematicae 23, 65 93 (1991).
[40] C. Doran, D. Hestenes, F. Sommen & N. Van Acker, Lie Groups as Spin
Groups, J. Math. Phys. 34, 3642 3669 (1993).
43 [ Pobierz całość w formacie PDF ]
zanotowane.pl doc.pisz.pl pdf.pisz.pl chiara76.opx.pl
[3] M. Wells, D. Hestenes, and G. Swackhamer, A Modeling Method for High
School Physics Instruction, Am. J. Phys. 63: 606-619 (1995).
[4] K. Ericsson & J. Smith (Eds.), Toward a general theory of expertise:
prospects and limits (Cambridge Univ. Press, Cambridge, 1991).
[5] A. Cromer, Connected Knowledge (Oxford, New York, 1997).
[6] L. Magnani, N. Nercessian & P. Thagard (Eds). Model-Based Reasoning
in Scientific Discovery (Kluwer Academic, Dordrecht/Boston, 1999).
[7] H. Doerr, Integrating the Study of Trigonometry, Vectors and Force
Through Modeling, School Science and Mathematics 96, 407 418 (1996).
[8] D. Hestenes, Toward a Modeling Theory of Physics Instruction, Am. J.
Phys. 55, 440 454 (1987).
[9] D. Hestenes, Modeling Methodology for Physics Teachers. In E. Redish
& J. Rigden (Eds.) The changing role of the physics department in modern
universities, Part II. (American Institute of Physics, 1997). pp. 935 957.
[10] D. Hestenes, Modeling Software for learning and doing physics. In C.
Bernardini, C. Tarsitani & M. Vincentini (Eds.), Thinking Physics for
Teaching (Plenum, New York, 1996). pp. 25 66.
41
[11] A. Einstein, Ideas and Opinions (Three Rivers Press, New York, 1985). p.
274.
[12] H. Goldstein, Classical Mechanics, Second Edition (Addison-Wesley, Read-
ing MA, 1980).
[13] D. Hestenes, Grassmann s Vision. In G. Schubring (Ed.), Hermann
Gunther Grassmann (1809 1877) Visionary Scientist and Neohumanist
Scholar (Kluwer Academic, Dordrecht/Boston, 1996). pp. 191 201.
[14] E. Redish & G. Shama, Student difficulties with vectors in kinematics
problems, AAPT Announcer 27, 98 (July 1997).
[15] D. Hestenes, Mathematical Viruses. In A. Micali, R. Boudet, J. Helm-
stetter (Eds.), Clifford Algebras and their Applications in Mathematical
Physics. (Kluwer Academic, Dordrecht/Boston, 1991). p. 3 16.
[16] D. Hestenes, New Foundations for Classical Mechanics, (Kluwer, Dor-
drecht/Boston, 1986). Second Edition (1999).
[17] D. Hestenes, Point Groups and Space Groups in Geometric Algebra, In L.
Doerst, C. Doran & J. Lasenby (Eds.), Applications of Geometric Algebra
in Computer Science and Engineering (Birkhäuser, Boston, 2002). pp. 3 34
[18] D. Hestenes, Multivector Functions, J. Math. Anal. and Appl. 24, 467
473 (1968).
[19] D. Hestenes & G. Sobczyk, CLIFFORD ALGEBRA to GEOMETRIC
CALCULUS, a Unified Language for Mathematics and Physics (Kluwer
Academic, Dordrecht/Boston, 1986).
[20] D. Hestenes, Vectors, Spinors and Complex Numbers in Classical and
Quantum Physics, Am. J. Phys. 39, 1013 1028 (1971).
[21] D. Hestenes, Space-Time Algebra, (Gordon & Breach, New York, 1966).
[22] D. Hestenes, Real Spinor Fields, J. Math. Phys. 8, 798 808 (1967).
[23] D. Hestenes & R. Gurtler, Local Observables in Quantum Theory, Am.
J. Phys. 39, 1028 1038 (1971).
[24] D. Hestenes, Spin and Uncertainty in the Interpretation of Quantum Me-
chanics, Am. J. Phys. 47, 399 415 (1979).
[25] C. Doran, A. Lasenby, S. Gull, S. Somaroo & A. Challinor, Spacetime
Algebra and Electron Physics, Adv. Imag. & Elect. Phys. 95, 271 365
(1996).
[26] D. Hestenes, Differential Forms in Geometric Calculus. In F. Brackx et
al. (eds), Clifford Algebras and their Applications in Mathematical Physics
(Kluwer Academic, Dordrecht/Boston, 1993). pp. 269 285.
42
[27] D. Hestenes, Clifford Algebra and the Interpretation of Quantum Me-
chanics. In J.S.R. Chisholm & A. K. Common (eds.), Clifford Algebras
and their Applications in Mathematical Physics, (Reidel Publ. Co., Dor-
drecht/Boston, 1986), pp. 321 346.
[28] F. Dyson, From Eros to Gaia (Pantheon books, New York, 1992). Chap.
14.
[29] D. Hestenes, A Unified Language for Mathematics and Physics. In J.S.R.
Chisholm & A. K. Common (eds.), Clifford Algebras and their Applications
in Mathematical Physics, (Reidel Publ. Co., Dordrecht/Boston, 1986), pp.
1 23.
[30] In J. Chisholm & A. Common (eds.), Clifford Algebras and their Applica-
tions in Mathematical Physics (Reidel Publ. Co., Dordrecht/Boston, 1986).
[31] D. Bohm, Quantum Theory (Prentice-Hall, New York, 1951).
[32] T. Havel, D. Cory, S. Somaroo, C.-H. Tseng, Geometric Algebra Methods
in Quantum Information Processing by NMR Spectroscopy. In E. Bayro
Corrochano & G. Sobczyk (Eds.), Geometric Algebra with Applications in
Science and Engineering (Birkhäuser, Boston 2001). pp. 281 308.
[33] R. Ablamowicz & B. Fauser (Eds.), Clifford Algebras and their Applications
in Mathematical Physics, Vol. 1 &2 (Birkhäuser, Boston, 2000).
[34] E. Bayro Corrochano & G. Sobczyk (Eds.), Geometric Algebra with Appli-
cations in Science and Engineering (Birkhäuser, Boston 2001).
[35] L. Doerst, C. Doran & J. Lasenby (Eds.), Applications of Geometrical Al-
gebra in Computer Science and Engineering (Birkhäuser, Boston, 2002).
[36] T. Vold, An introduction to geometric algebra with an application to
rigid body mechanics, Am. J. Phys. 61, 491 (1993); An introduction to
geometric calculus and its application to electrodynamics, Am. J. Phys.
61, 505 (1993).
[37] W. Baylis, Electrodynamics: A Modern Geometric Approach (Birkhäuser,
Boston, 1999).
[38] A. Lasenby & C. Doran, Geometric Algebra for Physicists (Cambridge U.
Press, Cambridge 2002).
[39] D. Hestenes, The Design of Linear Algebra and Geometry, Acta Appli-
canda Mathematicae 23, 65 93 (1991).
[40] C. Doran, D. Hestenes, F. Sommen & N. Van Acker, Lie Groups as Spin
Groups, J. Math. Phys. 34, 3642 3669 (1993).
43 [ Pobierz całość w formacie PDF ]